Классификация и Требования, предъявляемые к САР. Линейные и нелинейные САР. Общий метод линеаризации. Требования предъявляемые к САР

Дифференциальные уравнения можно линеаризовать следующими методами:

1. нелинейная функция рабочей области раскладывается в ряд Тейлора.

2. Заданные в виде графов нелинейные функции линеаризуются в рабочей плоскости прямыми.

3. Вместо непосредственного определения частных производных, вводятся переменные в исходные нелинейные уравнения.

,

. (33)

4. Данный метод основан на определении коэффициентов по методу наименьших квадратов.

, (34)

где - постоянное времени пневмопривода;

- передаточный коэффициент пневмопривода;

- коэффициент демпфирования пневмопривода.

Внутреннее строение элементов САР наиболее просто определяется с помощью структурных схем графов. В отличие от известных структурных схем в графах, переменные указываются в виде времени, а дуги обозначают или параметры, или передаточные функции типовых звеньев. Между ними существует четное соотношение.

Мм нелинейных элементов

Рассмотренные в первой главе методы линеаризации применимы, когда нелинейность, входящая в объект ЛСА, хотя бы один раз дифференцируема или аппроксимируется касательной с малой погрешностью некоторой окрестности близкой к рабочей точке. Существует целый класс нелинейностей, для которых оба условия не выполняются. Обычно это существенные нелинейности. К ним относятся: ступенчатые, кусочно-линейные и многозначные функции с точками разрыва первого рода, а также степенные и транстендентые функции. Использование УВМ, обеспечивающих выполнение логико-алгебраических операций в системах привело к новым типам линейностей, которые представляют через непрерывные переменные с помощью специальной логики.

Для математического описания таких нелинейностей применяют эквивалентные передаточные функции, зависящие от коэффициентов линеаризации, которые получают путем минимизации среднего квадрата ошибки воспроизведения заданного входного сигнала. Форма входных сигналов, поступающих на вход нелинейностей может быть произвольна. На практике наиболее распространение получили гармонические и случайные виды входных сигналов и их временные комбинации. Соответственно и методы линеаризации называются гармоническими и статическими.

Общий метод описания эквивалентных передаточных функций нэ

Весь класс существенных нелинейностей разделены на две группы. К первой группе относится однозначные нелинейности, у которых связь между входными и выходнымивекторными сигналами зависит только от формы статической характеристики нелинейности
.

.

В этом случае, при определенной форме входных сигналов:

.

С помощью матрицы линеаризации
можно найти приближенное значение выходных сигналов:

.

Из (42) следует, что матрица коэффициентов линеаризации однозначных нелинейностей, является действительными величинами и их эквивалентные передаточные функции:

.

Ко второй группе относят двузначные (многозначные) нелинейности, у которых связь между входными и выходными сигналами зависит не только от формы статической характеристики, но так же определяется предысторией входного сигнала. В этом случае выражение (42) запишется в виде:

.

Для учета влияния предыстории входного периодического сигнала будем учитывать не только сам сигнал , но и скорость его изменения, дифференциал.

При входных сигналах:

приближенное значение входного сигнала будет:

где
и
- коэффициенты гармонической линеаризации двухзначных нелинейностей;

- период колебания по правой гармонике;

- гармоническая функция.

Эквивалентная передаточная функция:

Существуют нелинейности более общего вида:

,

,

где
и
- коэффициенты гармонической линеаризации;

- номер гармоники.

Матрицы коэффициентов линеаризации периодической с периодом . Имея это ввиду, передаточную функцию двух двухзначной нелинейности можно представить по аналогии с передаточной функцией

Пользуясь определим обобщенную формулу для вычисления передаточной функции однозначных и двухзначных нелинейностей.

В случае однозначной нелинейности матрица коэффициентов линеаризации , зависящей от параметров вектора
, выберем, таким образом, чтобы линеаризовать среднее значение квадрата разности между точными приближенным
сигналами на входе:

После преобразований, упрощений, ухищрений и усиления бдительности, получим эквивалентную передаточную функцию в виде системы матриц:
,
.

,

при
,
.

.

Определить коэффициент линеаризации для однозначной нелинейности. Когда на ее вход поступает первая гармоника синусоидального сигнала:

где
.

.

Уравнение (56) представляет собой коэффициент линеаризации по первой гармонике для однозначной нелинейности, она определяет эквивалентную передаточную функцию
.

В дальнейшем сравнение формулы для определения коэффициентов линеаризации простейших нелинейностей при подаче на их вход периодических сигналов: синусоидального, треугольного, покажем целесообразность применения получаемых эквивалентных передаточных функций.

Коэффициент линеаризации определим
,
.

,

.

Пример. Определить коэффициент линеаризации двузначной нелинейности, когда на ее вход поступает первая гармоника синусоидального сигнала и имеет один вход. Из системы матриц (60), получим:

,

.

В данном примере входной сигнал запишем в виде:

,

.

Когда для двузначной нелинейности общая эквивалентная функция:

. .

Применительно к функции Z = cp (X , Х 2 , ..., XJ, нелинейной относительно системы своих аргументов, решение задачи в сформулированной выше постановке может быть получено, как правило, лишь приближенно на основе метода линеаризации. Сущность метода линеаризации заключается в том, что нелинейную функцию заменяют некоторой линейной и затем по уже известным правилам находят числовые характеристики этой линейной функции, считая их приближенно равными числовым характеристикам нелинейной функции.

Сущность этого метода рассмотрим на примере функции одного случайного аргумента.

Если случайная величина Z является заданной функцией

случайного аргумента X, то ее возможные значения z связаны с возможными значениями аргумента х функцией того же вида, т. е.

(например, если Z = sin X, то z = sin X).

Разложим функцию (3.20) в ряд Тейлора в окрестности точки х = m , ограничиваясь только первыми двумя членами разложения, и будем считать, что

Значение производной функции (3.20) по аргументу х при х = т х.

Такое допущение равносильно замене заданной функции (3.19) линейной функцией

На основе теорем о математических ожиданиях и дисперсиях получим расчетные формулы для определения числовых характеристик m z ий в виде

Заметим, что в рассматриваемом случае стандартное отклонение а г следует вычислять по формуле

(Модуль производной здесь берется потому, что она

может быть и отрицательной.)

Применение метода линеаризации для нахождения числовых характеристик нелинейной функции

произвольного числа случайных аргументов приводит к расчетным формулам для определения ее математического ожидания, имеющим вид

х 2 , ..., х п) по аргументам х. и х. соответственно, вычисленные с учетом знаков в точке ш х, т^,т Хп, т. е. путем замены всех входящих в них аргументов x v х 2 , ..., х п их математическими ожиданиями.

Наряду с формулой (3.26) для определения дисперсии D ? можно использовать расчетную формулу вида

где г х х - коэффициент корреляции случайных аргументов х.

Применительно к нелинейной функции независимых (или хотя бы некоррелированных) случайных аргументов формулы (3.26) и (3.27) имеют вид

Формулы, основанные на линеаризации нелинейных функций случайных аргументов, позволяют определять их числовые характеристики лишь приближенно. Точность вычисления тем меньше, чем больше заданные функции отличаются от линейных и чем больше дисперсии аргументов. Оценить возможную ошибку в каждом конкретном случае не всегда удается.

Для уточнения результатов, полученных по данному методу, может быть использован прием, основанный на сохранении в разложении нелинейной функции не только линейных, но и некоторых последующих членов разложения (как правило, квадратичных).

Кроме того, числовые характеристики нелинейной функции случайных аргументов можно определять на основе предварительного отыскания закона ее распределения при заданном распределении системы аргументов. Однако нужно иметь в виду, что аналитическое решение такой задачи часто оказывается слишком сложным. Поэтому для нахождения числовых характеристик нелинейных функций случайных аргументов широко используется метод статистического моделирования.

Основой метода является имитация серии испытаний, в каждом из которых путем моделирования получается определенная совокупность х и, x 2i , ..., x ni значений случайных аргументов x v х 2 ,..., х п из множества, отвечающего их совместному распределению. Полученные значения с помощью заданного соотношения (3.24) преобразуются в соответствующие значения z. исследуемой функции Z. По результатам z v z 2 , ..., z., ..., z k всех к таких испытаний искомые числовые характеристики вычисляются методами математической статистики.

Пример 3.2. Определить на основе метода линеаризации математическое ожидание и стандартное отклонение случайной величины

1. По формуле (3.20) получаем

2. Используя таблицу производных элементарных функций, находим

и вычисляем значение этой производной в точке :

3. По формуле (3.23) получаем

Пример 3.3. Определить на основе метода линеаризации математическое ожидание и стандартное отклонение случайной величины

1. По формуле (3.25) получаем

2. Запишем формулу (3.27) для функции двух случайных аргументов

3. Находим частные производные от функции Z по аргументам Х 1 иХ 2:

и вычисляем их значения в точке (m Xi х2):

4. Подставив полученные данные в формулу для расчета дисперсии Z, получим D z = 1. Следовательно, и ст г = 1.

Метод линеаризации операторов с точки зрения изложенной в предыдущих главах общей теории случайных функций может быть применен в двух различных вариантах. Во-первых, можно непосредственно линеаризовать заданную зависимость между случайными функциями и заменить таким образом нелинейные уравнения, связывающие случайные функции, линейными. Во-вторых, можно применить метод канонических разложений, который приводит к замене операций над случайными функциями операциями над обычными случайными величинами, после чего можно применить обычный в теории вероятностей метод линеаризации функциональных зависимостей между случайными величинами.

Метод непосредственной линеаризации преобразования случайных функций состоит в замене всех заданных уравнений, связывающих случайные функции, приближенными линейными уравнениями, достаточно хорошо отражающими истинную зависимость между случайными функциями в области практически возможных реализаций случайных функций. Так как математические ожидания случайных величин

являются средними значениями, около которых рассеиваются их возможные реализации, то практически удобнее всего производить линеаризацию соотношений между случайными функциями относительно их отклонений от математических ожиданий, т. е. центрированных случайных функций. При этом все функции, входящие в заданные уравнения, следует разложить в ряды Тейлора по центрированным случайным функциям и отбросить члены этих рядов выше первой степени. Степень точности получаемого таким образом приближения может быть оценка по максимальной возможной величине отброшенных членов в области практически возможных реализаций случайных функций. Заменив данные уравнения, связывающие случайные функции, приближенными линейными уравнениями, мы можем применить изложенную в предыдущей главе теорию линейных преобразований случайных функций для приближенного определения математических ожиданий и корреляционных функций случайных функций, полученных в результате рассматриваемого нелинейного преобразования. В следующем параграфе мы дадим более подробное изложение метода непосредственной линеаризации в применении к случайным функциям скалярной независимой переменной, связанным обыкновенными дифференциальными уравнениями.

Перейдем к применению метода канонических разложений к приближенному исследованию нелинейных преобразований случайных функций. Предположим, что случайная функция получается в результате преобразования случайной функции при помощи некоторого нелинейного оператора А:

Подставляя сюда вместо случайной функции какое-либо ее каноническое разложение, получим:

Это равенство представляет случайную функцию как некоторую, вообще говоря нелинейную, функцию случайных величин в которую аргумент 5 входит как параметр:

Линеаризуя эту функцию обычным в теории вероятностей способом (см. § 31) и принимая во внимтние, что математические ожидания величин равны нулю, будем иметь:

есть значение производной функции по случайной величине при нулевых значениях всех величин что и отмечено нуликом внизу у квадратной скобки. Формула (100.5) дает приближенное каноническое разложение случайной функции с коэффициентами разложения и координатными функциями

Принимая во внимание, что математические ожидания всех величин равны нулю, получим из (100.5) следующую приближенную формулу для математического ожидания случайной функции

Таким образом, для приближенного определения математического ожидания случайной функции следует в соотношении (100.1), связывающем случайные функции и заменить эти случайные функции их математическими ожиданиями Это правило вполне аналогично правилу приближенного определения математического ожидания случайной величины, связанной с другой случайной величиной нелинейной функциональной зависимостью, выведенному в § 31.

Корреляционная функция случайной функции на основании общей формулы (56.2), выразится приближенной формулой

В том случае, когда в уравнении (2.4) функция представляет собой нелинейную функцию своих аргументов, динамика работы звена описывается нелинейным дифференциальным уравнением, а само звено называется нелинейным динамическим звеном. Если же описание динамики работы звена приводит к линейному дифференциальному уравнению [функция в уравнении (2.4) линейно зависит от своих аргументов], то звено называется линейным динамическим звеном. Заметим, что линейность статической характеристики звена, вообще говоря, не дает основания отнести его к разряду линейных, ибо встречаются случаи, когда нелинейные свойства звена проявляются только в неустановившихся режимах.

Исследование нелинейных дифференциальных уравнений существенно труднее и сложнее, чем линейных. Поэтому в тех случаях, когда это возможно, всегда стремятся линеаризовать нелинейное дифференциальное уравнение, т. е. заменить его приближенно некоторым линейным дифференциальным уравнением, решение которого достаточно близко к решению исходного нелинейного уравнения.

Простейший способ линеаризации основан на разложении нелинейной функции в ряд Тэйлора с последующим отбрасыванием нелинейных членов разложения. Рассмотрим этот способ применительно к уравнению (2.5), имеющему первый порядок. Все изложенное будет справедливо и для уравнений более высокого порядка.

Линеаризация нелинейного уравнения всегда производится относительно некоторого, заранее выбранного, режима работы динамического звена. Чаще всего в качестве режима, принимаемого при линеаризации за исходный, выбирается установившийся режим, характеризуемый постоянством всех обобщенных координат. Применительно к уравнению (2.5) уравнения исходного режима математически могут быть записаны так:

Здесь - постоянные величины, связанные между собой уравнением

Выбрав исходный режим, для линеаризации уравнения (2.5) поступают следующим образом.

1. Представляют все входящие в рассмотрение координаты в виде

В уравнениях отклонения соответствующих координат от их значений (2.8), принятых за исходные при линеаризации. Соотношения (2.10) - (2.12) позволяют вместо полных значений координат оперировать их отклонениями (или приращениями)

2. Левую часть уравнения (2.5) разлагают в ряд Тэйлора относительно точки с координатами соответствующей исходному режиму. В результате уравнение (2.5) переписывается в виде

В соответствии с правилом разложения функции нескольких переменных в ряд Тэйлора частные производные, входящие в левую часть уравнения (2.16), вычисляются в точке, соответствующей режиму, принятому за исходный при линеаризации, так что, например, означает частную производную от функции по переменной в которую после вычисления подставлены значения Так как в исходном режиме все координаты постоянны, то все фигурирующие в уравнении (2.16) частные производные представляют собой просто некоторые числа, зависящие от выбора исходного режима (т. е. от чисел Символом в уравнении (2.16) обозначен остаточный член разложения, содержащий вторую и более высокие степени отклонений и их произведения, умноженные на соответствующие частные производные. Функция обладает тем свойством, что

3. Отклонения координат их исходных значений считают малыми («гипотеза малых отклонений») и на этом основании в левой части уравнения (2.16) пренебрегают членами, содержащими вторую и более высокие степени отклонений и их произведения

как членами более высокого порядка малости по сравнению с членами, содержащими отклонения в первой степени, т. е. полагают

Учитывая, кроме того, соотношение (2.9), окончательно получают уравнение

Это уравнение есть линейное дифференциальное уравнение с постоянными коэффициентами. Оно представляет собой результат линеаризации нелинейного уравнения (2.5) относительно исходного режима (2.8).

Из изложенного следует, что необходимым условием линеаризации является разложимость функции фигурирующей в левой части нелинейного дифференциального уравнения, в ряд Тэйлора в окрестности точки с координатами, соответствующими режиму, выбранному при линеаризации за исходный. Если такое разложение невозможно (например, функция недифференцируема по какой-либо из координат), то рассмотренный метод линеаризации не имеет силы, и исходное нелинейное уравнение даже приближенно не может быть заменено линейным. В этом случае говорят, что динамическое звено, описываемое таким уравнением, является существенно нелинейным, т. е. нелинеаризуемым. Деление динамических звеньев на линеаризуемые и нелинеаризуемые связано со способом линеаризации, основанным на разложении нелинейной функции в ряд Тэйлора. В главе 8 будут рассмотрены методы, позволяющие осуществить линеаризацию и существенно нелинейных уравнений (методы гармонической линеаризации).

Основным допущением, которое позволяет перейти от нелинейного уравнения (2.5) к линейному уравнению (2.19), является допущение о малости отклонений всех входящих в рассмотрение координат от их значений, принятых при линеаризации за исходные. Поэтому линеаризованное уравнение (2.19) дает возможность исследовать лишь малые отклонения величин, характеризующих работу динамического звена, от исходного режима. Однако и такое рассмотрение в ряде случаев очень полезно.

Запись линейного дифференциального уравнения в форме (2.19) является довольно громоздкой и неудобной для практического применения. В автоматике при записи линейных уравнений принято выходную величину звена (или ее отклонение) и ее производные записывать в левой части уравнения, а все остальные члены переносить в правую часть. В такой форме записи уравнение (2.19) примет следующий вид:

С целью сокращения выкладок в теории автоматического управления широко используется символический метод записи линейных дифференциальных уравнений, в основе которого лежит условное (символическое) обозначение производных и интеграла:

Так называемый символ дифференцирования. Его не следует путать с комплексной переменной, фигурирующей в преобразовании Лапласа (см. § 4.2), которую иногда также обозначают буквой В отличие от преобразования Лапласа (и родственных ему операционных методов) символический метод, сокращая и унифицируя запись дифференциальных уравнений и их систем, не содержит никаких приемов, облегчающих их решение.

При использовании символических обозначений уравнение (2.20) записывается следующим образом:

Уравнение (2.25) часто переписывают в виде

чисто формально отрывая символ дифференцирования от обозначения дифференцируемой функции.

Если обозначить

то уравнение (2.26) запишется еще более компактно:

Уравнения (2.26) и (2.30) следует рассматривать просто как удобную сокращенную запись уравнения (2.20). Никакого другого смысла они не имеют. Полиномы (2.27)-(2.29), входящие в уравнение (2.30), называются символическими полиномами. Пользуясь преобразованием Лапласа, нетрудно доказать, что символические полиномы можно складывать и перемножать по правилам действий с обычными полиномами. Это обстоятельство в ряде случаев позволяет значительно упростить и облегчить преобразования систем дифференциальных уравнений (например, «свертывание» системы дифференциальных уравнений в одно уравнение - см. гл. 3).

В дальнейшем дифференциальные уравнения линейных звеньев систем управления будут записываться преимущественно в форме

(2.30). При этом часто оказывается удобным разделить все члены дифференциального уравнения на коэффициент при выходной координате звена (или ее отклонении). Так, поделив все члены уравнения (2.26) на коэффициент си получим уравнение

Поскольку соединять знаками сложения, вычитания и равенства можно лишь величины одинаковой размерности, все члены уравнения (2.31) имеют размерность величины Учитывая, что Мсек, нетрудно получить соотношения для размерностей коэффициентов уравнения (2.31):

Коэффициент называется постоянной времени звена, описываемого уравнением (2.31), а величины и - коэффициентами передачи звена по входной величине и по возмущению.

Уравнение (2.31) называется линейным дифференциальным уравнением первого порядка в стандартной форме записи. Аналогично к стандартному виду преобразуются и уравнения более высоких порядков.

Рассмотрим снова какой-либо установившийся режим работы звена, характеризующийся постоянством координат Уравнения показывают, что отклонения координат от исходных значений в таком режиме также будут постоянны. Отсюда следует, что и линеаризованное уравнение (2.31) для установившегося режима упрощается:

Положим, кроме того что Тогда

Это уравнение является линейным. Полные значения переменных в рассматриваемом режиме связаны нелинейной зависимостью:

Сопоставление уравнений (2.36) и (2.35) позволяет дать простую геометрическую интерпретацию процессу линеаризации. На самом деле, уравнение (2.36) в плоскости координат определяет статическую характеристику звена, соответствующую значению Эта характеристика может, например, иметь вид кривой, изображенной на рис. 2.3. Выбор режима (2.8), принимаемого за исходный при

линеаризации, на этой характеристике соответствует выбору точки с координатами Переход от полных значений координат к их приращениям в плоскости геометрически означает перенос начала координат из точки О в точку В координатах уравнение (2.35) представляет собой уравнение прямой, проходящей через начало координат и имеющей угловой коэффициент

Соотношение (2.37) определяет производную функции заданной в неявной форме уравнением (2.36). Поэтому окончательно

Рис. 2.3. К пояснению геометрического смысла линеаризации

Таким образом, геометрический смысл линеаризации применительно к установившимся режимам состоит в том, что реальная статическая характеристика звена заменяется касательной к ней, проведенной в точке соответствующей режиму, выбранному за исходный при линеаризации. В том случае, когда касательную к статической характеристике в точке провести нельзя (характеристика в этой точке имеет излом, разрыв, неоднозначность и т. д.), линеаризация относительно выбранного исходного режима невозможна. Поэтому часто уже по виду статической характеристики звена удается судить о возможности или невозможности линеаризации описывающего его дифференциального уравнения.

Рис. 2.3 наглядно показывает, что чем меньше отклонение величины от исходного значения тем ближе расположена касательная к статической характеристике звена и тем точнее, следовательно, линеаризация.

Коэффициент в уравнении (2.35) может быть определен графоаналитически при помощи соотношения

где - коэффициент, учитывающий масштабы, принятые по осям координат; - угол, составленный касательной к статической характеристике звена в точке с осью абсцисс.

Наличие второго члена в правой части уравнения (2.34) ничего принципиально нового не вносит и свидетельствует лишь о том, что в установившемся режиме отклонение выходной величины звена от исходного значения в общем случае определяется отклонением не только входной величины но и дополнительного воздействия (например, какого-либо возмущения).

Аналогично может быть проиллюстрирован процесс перехода от нелинейного дифференциального уравнения (2.5) к линейному уравнению (2.19). Суть перехода заключается здесь в приближенной замене многомерной поверхности, определяемой уравнением (2.5), касательной к ней многомерной плоскостью, задаваемой уравнением (2.19). В силу громоздкости и малой наглядности геометрических построений в многомерном пространстве такой подход не приносит практической пользы и подробно здесь не рассматривается.

Из сопоставления уравнений (2.5) и (2.19) видно, что результат линеаризации (2.19) может быть написан сразу, так как левая часть линеаризованного уравнения представляет собой сумму произведений частных производных функции по каждому из ее аргументов на отклонения этих аргументов от исходных значений.

Этот результат, полученный на примере дифференциального уравнения первого порядка, сохраняет силу для уравнений произвольного порядка. В частности, для уравнения (2.6) линеаризованное уравнение запишется в виде

Уравнение (2.40) можно записать в форме (2.30), если обозначить

Здесь символические полиномы имеют первую степень относительно Ранее отмечалось, что признаком стандартной формы записи дифференциальных уравнений является равенство единице первых отличных от нуля коэффициентов при младших степенях во всех участвующие в рассмотрении символических полиномах. Пусть, например, Тогда результат линеаризации уравнения (2.6) может быть записан следующим образом:

Поделив обе части последнего уравнения на коэффициент будем иметь

Предположим дополнительно, что Тогда уравнение (2.45) можно представить в виде

причем нетрудно показать, что

Уравнение (2.45) представляет собой один из примеров стандартной формы записи линейного дифференциального уравнения второго порядка. Как и для уравнения первого порядка, коэффициенты , имеющие размерность времени, называются постоянными времени звена, а величины и - коэффициентами передачи звена.

При пользовании стандартной формой записи удобно считать все постоянные времени и коэффициенты передачи звена неотрицательными числами. Поэтому, например, в том случае, когда при вычислениях по формулам (2.44) окажется, что уравнение (2.40) следует записывать так:

где коэффициенты

являются положительными.

Для уравнения (2.4) произвольного порядка результат линеаризации имеет следующий вид:

Обозначив

уравнение (2.47) можно записать так:

Уравнение (2.51) после введения символических полиномов

приводится к уравнению (2.30). Рассмотренные ранее линейные уравнения 1 и 2-го порядков являются частным случаем уравнения (2.51) при Это позволяет считать уравнение (2.51) общим уравнением обыкновенного линейного звена при наличии одного возмущающего воздействия. В правой части уравнения (2.51) фигурируют внешние воздействия умноженные на соответствующие символические многочлены. Поэтому по аналогии в том случае, когда на звено действует несколько возмущений общее уравнение звена можно записать следующим образом.

Метод гармонической линеаризации позволяет с достаточной для практики точностью исследовать устойчивость и точность нелинейных систем, используя методы, разработанные для линейных систем. Метод дает возможность определить наличие автоколебаний, а также их частоту и амплитуду.

Нелинейная система представляется в виде соединения линейной и нелинейной части (рис. 5).

Рис. 5 Схема нелинейной системы

Выходной сигнал нелинейной части системы в общем случае определяется выражением

Обозначим как передаточную функцию линейной части. Система уравнений примет вид

Найдем условия, при которых на выходе линейной части системы возникают гармонические колебания вида

В этом случае сигнал y(t) нелинейной части будет представлять собой также периодическую функцию, но отличную от синусоиды. Эту функцию можно разложить в ряд Фурье

В этом выражении a i и b i - коэффициенты Фурье. Для симметричных нелинейностей F 0 =0.

Основным условием, которое накладывает метод на линейную часть системы, является условие фильтра нижних частот. Считается, что линейная часть пропускает только первую гармонику колебаний. Данное допущение позволяет считать высшие гармоники в (7.19) несущественными и ограничиться рассмотрением только первой гармоники сигнала y(t).

то выражение (7.20) можно переписать в виде

Первое уравнение системы (7.17) примет вид

В этом выражении


Результат замены нелинейности F(x,sx) выражением

и называется гармонической линеаризацией. Величины q и q 1 называются коэффициентами гармонической линеаризации или просто гармоническими коэффициентами. Для однозначных нелинейностей обычно q 1 =0 . Формулы для гармонических коэффициентов, соответствующих типовым нелинейностям, приводятся в приложениях.

Принципиальное отличие гармонической линеаризации от обычной состоит в том, что при обычной линеаризации нелинейную характеристику заменяют прямой линией с определенной постоянной крутизной, а при гармонической линеаризации - прямой линией, крутизна которой зависит от амплитуды входного сигнала нелинейного элемента.

Рассмотрим методику определения амплитуды и частоты автоколебаний.

1). В характеристическом уравнении системы, полученном из (7.22) делаем замену s=j и получим

2). Из полученного выражения выделяем вещественную и мнимую части и приравниваем их нулю, что, по критерию Михайлова, соответствует нахождению системы на колебательной границе устойчивости.

  • 3).Решение этой системы дает частоту и значения гармонических коэффициентов. Если эти значения вещественны и положительны, то в системе существует предельный цикл. По значениям гармонических коэффициентов можно определить амплитуду предельного цикла.
  • 4). Общим признаком устойчивости предельного цикла, т.е. существования автоколебаний, является равенство нулю предпоследнего определителя Гурвица при полученных значениях амплитуды и частоты предельного цикла. Часто более удобно использовать условие устойчивости предельного цикла, в основе которого лежит критерий устойчивости Михайлова.

Если это неравенство выполняется, то предельный цикл устойчив и в системе существуют автоколебания с определенными выше амплитудой и частотой. Индекс ”*” означает, что производные вычислены при уже известных значениях гармонических коэффициентах, амплитуды и частоты.

Пример. Допустим, что в уже рассмотренной выше системе стабилизации угла тангажа самолета рулевой привод нелинейный и его структурная схема имеет вид, показанный на рис. 7.6.

Рис.6 Схема нелинейного рулевого привода

Зададим следующие параметры нелинейности скоростной характеристикм рулевого привода: b = 0.12, k 1 = tg =c/b = 6.7. Коэффициенты гармонической линеаризации этой нелинейности определяются выражениями

Заменив в схеме нелинейную характеристику гармоническим коэффициентом, получим передаточную функцию рулевого привода

Подставим эту передаточную функцию в структурную схему системы стабилизации угла тангажа и определим передаточную функцию замкнутой системы

В характеристическом уравнении замкнутой системы сделаем замену s = j и выделим вещественную и мнимую части.

Из второго уравнения системы получим выражение для частоты: , и подставив его в первое уравнение, после преобразований получим

Подставив сюда ранее определенные выражения для коэффициентов характеристического уравнения, можно получить квадратное уравнение относительно гармонического коэффициента, решив которое, найдем

По этим значениям можно вычислить для двух случаев все коэффициенты характеристического уравнения и определить частоты, соответствующие каждому значению q(А). Получим:

Оба значения гармонического коэффициента и соответствующие частоты вещественны и положительны. Следовательно, в системе существуют два предельных цикла. Значения амплитуды предельного цикла определяются численно путем подбора такого значения при котором формула для коэффициента гармонической линеаризации дает значение, равное ранее вычисленному. В рассматриваемом случае получим

Теперь оценим устойчивость предельных циклов. Используем неравенство, полученное из критерия Михайлова, для чего определим

Производная от коэффициента гармонической линеаризации, входящая в полученные выражения, вычисляется по формуле


Расчеты по выше приведенным формулам показывают, что первый предельный цикл не устойчив и возникает он при (0) 0.1166(6.7 0 ). Если начальное отклонение меньше указанного, то процесс на входе нелинейного элемента затухает (рис.7. 7) и система устойчива.


Если начальное значение угла тангажа больше указанного, то процессы сходятся ко второму предельному циклу, который устойчив и, таким образом в системе возникают автоколебания (рис. 8).


Рис. 8

Путем моделирования определено, что область притяжения устойчивого предельного цикла лежит приблизительно в пределах (0) 0.1167 - 1.4 (6.71 0 - 80.2 0 ).